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Abstract. This paper deds with the problem of fault detection,
isolation and identification of a hydraulic power system. A proposed
fault diagnostic scheme (FDS) using an artificid neural network
(ANN) isinvestigated. A feedforward neural network is employed to
diagnose two commonly occurring faults of the hydraulic power
system: actuator interna leskage and valve spool blockage. The
characterizing model of each fault is derived. The fault diagnostic
scheme is applied to a hydraulic power test rig to diagnose real
encountered faults. The ANN based FDS has been trained with
sufficient data of the faults. Extensive experiments have been carried
out and their results are presented and discussed. The experimental
results have showed that the trained network has the capability to
detect and identify various severity magnitudes of the faults of
interest. Furthermore, the trained ANN based FDS has the ability to
identify fault levels of untrained fault cases accurately. Therefore, the
validity of the proposed FDS as a diagnostic tool for the hydraulic
actuator internal leakage and the valve blockage has been assured.
Finally, the proposed fault diagnostic scheme can be practically
implemented.

Keywords: Fault diagnostic technique, artificial neural network,
hydraulic actuator, oil leskage and valve spool
blockage.

1. Introduction

Over the last two decades, fault diagnosis (FD) has become an issue of
primary importance in modern process automation as it provides a basis
for the reliable and safe fundamental design features of many complex
engineering systems . A fault diagnosis is required to avoid power loss
in different systems or even loss of human lives. Fault diagnosis aims to
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provide information for time and location of faults that occur in the
supervised process. A system is called a healthy system when it runs free
of faults, on the contrary, a faulty system is that having deviations from
the normal behavior of the system or its instrumentations. Fault
diagnosis process includes the following tasks '3: fault detection, which
indicates that something is going wrong in the system, fault isolation
which determines the exact location of a fault and fault identification,
which determines the magnitude of a fault severity.

Different approaches have been used to diagnose hydraulic system
faults. Modelfree FD methods utilize multiple sensors to measure the
same quantity. Faults are diagnosed by processing the multiple
measurements using spectrum analyses or using the logic reasoning
approach or comparing the measurement to preset limit vaues, limit
checking approach. On the other hand, model-based FD methods use an
explicit mathematical model describing the system, which requires an
accurate model for diagnosis >3, Another way of FD approaches is to
diagnose based on a comparison between real data and mathematical
models of the hydraulic system . It is a reliable and universal method
once the mathematical model is established. However, it is very difficult
to establish a reliable mathematical model since the system contains
considerable non-linearities and time delays due to frictional forces
generated, mechanical looseness and other factors. The other approach is
to develop an intelligent system based on expert knowledge and learning
of the hydraulic system behaviors.

Current trends in the field of FD of hydraulic systems apply ANNs
to diagnose faults of some system components such as valves, actuators,
pumps, or sensors. The artificial neural networks (ANNS) have the
capability to perform pattern recognition and diagnosis that are difficult
to describe in terms of analytical dia?nosis algorithms since they can
learn input patterns by themselves *°. Learning can be viewed as an
automatic, incremental synthesis of functional mappings that represent a
fault function. Unlike adaptation methods, where the emphasis is on
approximating temporal properties, learning systems employ networks
with large memory for approximating the spatial dependence of the fault
function. Therefore, learning methods can be used not only for fault
detection but also for identification of characteristics of the fault through
approximation of its functional relation to the measurable state and input
variables!”.
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Ramden et al. [ used ANNs for the FD of a hydraulic control
system driven by a planetary gearbox of large vehicle including four
directional control valves. The studied faults are the valve stuck in its
non-activated and activated positions. Le et al. [¥ presented a method
using ANNSs to detect single and multiple leakage types in a fluid power
system including servo valve and a single rod actuator. In llott and
Griffiths 1, the fault diagnosis of pumping machinery was introduced
by applying ANNs concept. They could provide accurate, incipient FD
based on real industrial data corresponding to historical pump faults.
Crowther et al. ™ presented an ANN approach to the FD of dynamic
engineering systems based on the classification of surface in system
output vector space. The ANN acted as a parameter estimator and its
output was used as fault indicator. Sharif and Grosvenor *2 presented an
approach for FD of a control valve unit. The approach is sensor-based in
which sensors of pressure, temperature and position were used. The
performance of the system was monitored under various conditions to
establish the effects of the faults on its operation. In addition, the use of
ANNSs for sensor validation, data recovery and engine fault diagnosis by
using areal engine data isstudied in Mesbahi /. A single feed-forward
ANN is trained for engine fault diagnosis purposes and tested against
untrained data was achieved. Wang and Jiang ' presented a method for
monitoring and diagnosing the degradation in the performance of valves.
A recurrent cerebellar model articulation controller (CMAC) neural
network was used to learn the normal characteristics of the valve. Using
the trained CMAC neural network, the types and severity of degradation
can be identified and estimated. Karpenkoa et al. ™ investigated a
neural-network-based scheme for detection and identification of actuator
faults in a typical process control valve. Their results showed that the
trained network has the capability to detect and identify various
magnitudes of the faults of their interest.

In this paper a fault diagnostic scheme (FDS) based on the ANN
concept is presented. The internal leakage inside a hydraulic cylinder
and control valve spool blockage faults are studied. Testing the proposed
FDS on a laboratory hydraulic power system has been carried out.
Finally evaluating the performance of the proposed technique has been
introduced. The remainder of this paper is organized as follows: In
Section 2, the feature and modeling of the interested faults are outlined.
Design of the proposed ANN based FDS is introduced in Section 3.
Section 4 presents a description of the experimental set up. Section 5
introduces the application of the ANN based FDS on the hydraulic
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power system faults and the experiments carried out in this work.
Results and discussions are introduced in Section 6 while conclusions
drawn are included in Section 7.

2. Modeling of the Faults

The faults of interest are: (i) internal leakage inside the cylinder
and (ii) spool blockage of the directional control valve. These faults are
probably the most common faults of the hydraulic power system as well
as they can not be easily quantified and identified in real time operation
of hydraulic systems. This section aims to introduce the mathematical
models of the selected faults, the parameters to be monitored to diagnose
these faults and how to identify these faults.

2.1 Mathematical Model of the Oil Leakage Fault

Figure 1 shows a schematic diagram of a typical hydraulic valve-
actuator system. The valve orifices are assumed matched and symmetrical. It
is also assumed that the line dynamics and losses are negligible, i.e,, Pi=Ps
and P,=P. , where P, and P, are the pressures a the high-pressure side and
the low-pressure side of the actuator respectively, Ps and Pe are the supply
and exit pressures respectively. The following assumptions are considered
through this work: the fluid properties are not changed, i.e. the effective bulk
modulus S and the density of the fluid r are congtant, the supply and exit
pressures are condant, both valve and actuator parameters are congant and
the effect of loca variations of working temperature is negligible during the
experiments.

High-pressureside  Qu Low-pressure side Pisto rod
| ‘ travel, x, Load
—

Py Az Vo2 P,
Single rod actuator

| Directional
control valve

Spool travel, xs ‘

l T l To reservoir
Pe Ps Pe

Fig. 1. A schematic diagram of atypical hydraulic valve-actuator system.
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Applying the continuity equation to each of the actuator chamber
for extension motion yields X6

Ql - QIL = Alxp + I:‘)1(\/01 + Alxp)/ be (1)

QIL - QZ = AZXp + I:‘)2(\/02 + Azxp)/be (2)

The term of internal leakage inside the actuator can be derived from Eq.
(2) and (2) asfollows:

Qu =510~ Q- (A+A)%, - (B + AX)- BV + AX)IB] ()

where Q;, Q. are the flow rates at the high-pressure side and the low-
pressure side respectively, Q. isthe interna oil leakage flow rate across
the actuator piston, Vo1 and V,, are the initia volumes of oil in the
actuator sides (Fig. 1), A; and A; are the areas of the piston head from
sdes 1 and 2 respectively, x, and X, are the displacement and the

velocity of the piston rod respectively.

Assuming negligible leakage through the cylinder ports, P; and P,

relationships for Q; and Q, are written as 7,

Q =CiA2(R - R)/T (4)
QZ = Cd Ap(xs)\jz(PZ - Pe)/r (5)

where Cq is the valve flow coefficient, Ay(xs) is the valve port area
corresponding to the valve spool travel ..

Substituting by Q, and Q- of Eq. (4) and (5) in Eg. (3), the internal
oil leakage flow rate across the actuator sides Q. can be expressed as
follows:

Q1 2 CALR R [ R)- (A A)%, - (B # A% BV + Ax)]
(6)
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2.2 Mathematical Model of the Valve Spool-Blockage Fault

In order to determine the severity of the valve spool-blockage
fault, the travel of the spool has to be determined. Considering a
rectangular shape of the valve port with a constant width w and
substituting by Q. of EQ. (4) in Eq. (1), the travel of the valve spool xs
can be expressed as follows:

X = [QIL + Alxp + I:‘i(\/ol + Alxp)/be]/CdW‘\/ 2(Ps - Fi)/r (7)

From the expression in Eqg. (7), it is clear that the valve spool

movement Xs depends on the variablesR, R, x,, X, , pressure difference
(P1-P2) valve flow gain and Q. which is a function of the parameters
(R,R, R, R,y X, X,).Other parameters may be considered of constant
values. Therefore, the pressure at the high-pressure side P; and its
derivative, the pressure at the low-pressure side P, and its derivative, the

displacement and the velocity of the piston rod x, and X,, are the
variable utilized to describe the valve spool jamming fault.

2.3 Fault Indices

Fault indices are the parameters that define the fault and its
severity. The values of the fault indices will be the outputs of the ANN
based FDS of the present work. Dimensionless fault indices that are
utilized in thiswork are described as follows:

For internal oil leakage across the actuator chambers:

a=Q./Q (8)

For valve spool blockage fault:
a, =x/s, (9)

where a; and a, are the indices of the internal leakage and valve spool
blockage faults respectively, Q. is the amount of the leakage flow rate
between the two chambers of the actuator, s; is the total stroke of the
valve spool.
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The values of all fault indices are between zero and one according
to the fault severity. For a healthy system, the fault index is zero.

2.4 Fault Variables and Selecting Minimum Number of Sensors

It is clear from the mathematical models of the oil leakage and the
valve spool-blockage faults, that the variables: x,, P., and P, and their
derivatives are sufficient to describe fault indices. Hence, only three
sensors are sufficient to diagnose the considered faults. These sensors
are two pressure sensors and a velocity sensor.

3. Design of the ANN-Based Fault Diagnostic System

The ANN based FDS performs pattern recognition in such that it
classifies the input data vectors to different categories according to fault
types. This leads to achieve the detection and isolation of the hydraulic
power system faults. The ANN based FDS works in two modes
sequentially: (i) the training mode and (ii) the fault diagnostic mode.

In the first mode, the ANN learns the performance of ether the
healthy or faulty hydraulic systems. To work in this mode, sets of the
operating data are gathered for the hydraulic power system. Each set of
the operating data includes the variables that feature each fault. The
outputs of the ANN are the fault indices a; and a,, corresponding to each
set of the operating data, that represent the type and the magnitude of the
fault severity. Healthy and faulty signatures of the hydraulic power
system as well as the corresponding fault indices are used to train the
ANN to discriminate among the faults of the valve and the actuator.
Thus, the first function of the ANN is assigning each operating condition
to a specific class of the faults.

In the second mode, the trained ANN works in the diagnostic
mode. It receives the hydraulic system signature, i.e., its operating data, ,
and then estimates the fault type and its severity. The trained ANN can
directly accomplish the whole task of fault isolation, detection and
identification by determining the fault type and its severity. Finaly, the
trained ANN can execute this task either onling, i.e., the hydraulic
system is in its operating mode, or offline, i.e., the hydraulic systemisin
its idle mode. Furthermore, the trained ANN can predict and identify the
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type and severity of untrained fault beside the trained faults based on its
level of intelligence.

3.1 Configuration of the ANN

Figure 2 shows the architecture of the ANN based fault diagnostic
scheme (FDS). The ANN is a multilayer feedforward network (input
layer, hidden layer and output layer). There is no inner feedback loop or
direct connection from the input layer to the output layer. A hyperbolic
tangent activation function is used for each hidden layer neuron while a
linear activation function is used for each output layer neuron. The
following relation accomplishes the computation of the neural network’s
outputs O(t):

N1 NO
O =a2(t) +@ Wi°E) tanh(al'®) +g WI"®) 1 (), k=LN2 (10)
j=1 i=1

where NO, N1 and N2 are the number of inputs, hidden layer
neurons and the output layer neurons respectively, qj"(t) are the

thresholds of the hidden layer, W," are the weights from the input to the
hidden layer and Ii(t), i=1 to NO are the inputs to the ANN based FDS,
q;(t) are the thresholds of the output layer and W,;° are the weights
from the hidden layer to the output layer.

The number of neurons in the hidden layer has to be chosen
carefully to ensure that the network was not over-trained thus limiting its
generalization ability ™). In this work, the appropriate number of hidden
layer neuronsis determined experimentally.

ANN based FDS
. |, qa, Leakage

fault index

Sensory data acquisition | Processed records
and preprocessing H,ljl,l%,l%,xpandxp N

a Valve fault
— A2 .
index

ﬁ Sensory measured records of B, P, andx,,

The hydraulic system
and sensors

Fig. 2. Thearchitecture of the ANN based fault diagnostic scheme.
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3.2 Gathering and Preprocessing Data of the ANN-Based Fault
Diagnostic System

Figure 3 shows the architecture of the overal fault diagnostic
system based on ANN. The operation of the FDS starts after its training

and testing. Measured record readings of the sensors for B, P, and X,
that represents the hydraulic system performance, are fed to a data
acquisition system. The measured data records are software processed,
by differentiating P1, P, and integrating X ; , and rearranged in a matrix
form suitable for the ANN. The processed data records are fed to the

neural network to accomplish its function ether in training or in
detection, isolation and identification of the faults.

N2 neurons

Index of internal

O
N1 neurons %@_‘% Hs leakagefault ay
Linear activation
function !
Hyperbolic i0, Index of valve
tangent \@_. %4—» spool blockage
activation i

fault =2
function

HEEN

W, i=1tom i Input layer Hidden layer Output layer

Fig. 3. The architecture of the overall fault diagnostic system using ANN.
3.3 Training Data

Referring to Fig. 3, a moving data window, of n points

representing the history of each variable, Pl,Pl,Pz,Pz,xp and X, is

applied to each input of the ANN. Thus, the total inputs to the ANN are
6n, i.e,, N1= 6n. The outputs of the ANN are 2 which represents the
number of fault indices, i.e, N2= 2. Both the measured and the
processed data representing the input vectors of these three basic
variables and the fault indices as output data for all fault cases are fed
sequentially to the ANN input layer. Findly, the training input and output
data matrices have the following forms, Eqg. (11 & 12):
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u

[O] — éﬂiwlcl alwzc1 a1Wmc1 alwlc2 a1W2c2 ainCn l:l (12)
@ZWﬁ:l a2W2C1 aZWmcl a2W1C2 aZchz aZwmcn g

where | and O are the input and output matrices respectively. wi, (i= 1 to
m) is the i™ data window, which covers 50 points length, m is the total
number of windows covering the extending stroke of the actuator rod. ¢,
(j= 1to n) isthe ™ fault case while n is the total number of healthy and
faulty cases.

3.4 Training Process of the ANN-Based Fault Diagnostic System

Severa learning algorithms have been proposed to adjust the
weight values of the ANN based FDS. The backpropagation (BP)
method is widely used as a learning method for an ANN especially for
offline learning. The main advantage of the BP method is that the
teaching performance is highly improved by the introduction of a hidden
layer 1*°. In this paper, BP learning rules with momentum and adaptive
learning rate are used to adjust the weights and biases of networks
through minimizing the sum squared error of the ANN. This is done by
continually changing the value of the ANN weights and biases in the
direction of steepest descent with respect to the error. The BP with
momentum method decreases BP’s sendtivity to small details in the
error surface. This helps the training process to avoid being stuck in
shallow minima. In addition, training time can also be decreased by the
use of an adaptive learning rate, which attempts to keep the learning rate
step size as large as possible while keeping learning stable. These two
techniques can be used with BP to make it a faster, more powerful, and
more useful learning paradigm '°!. The training process starts with initial

random value of the weights W.", W;° and the biases g aswell as g .
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4. Experimental Setup Description
4.1 The Test Rig Description

Figure 4 shows a schematic layout of the test rig while Fig. 5
shows a photo of the experimental setup. The test rig used in this work
consists mainly of three items, the hydraulic system, the control unit,
and the data acquisition system. Figure 6 depicts a schematic layout of
the tested hydraulic system. As shown in thisfigure, the cylinder 1 isthe
test cylinder, which is driven by 4/3 directional control valve (DCV)
with double solenoids and double springs for centering position (Type
Dynex/Rivett 6550-D03-24VDC-10). Cylinder 2 works as a load unit,
which is driven by a bridge equalizer to control the velocity of both
cylinders and apply aload. Each actuator cylinder has a bore diameter of
50 mm, arod diameter of 25 mm and a stroke of 300 mm. There are two
similar hydraulic power units utilized to drive each actuator separately.
Each hydraulic power unit can supply a flow rate of 9.46 [/min while
the maximum pressure of each unit is adjusted at 34.5 bar. An
accumulator is connected to the input side of the directional control
valve to minimize local fluctuations of the input supply pressure. The
motion of the hydraulic cylinders is controlled through a relay control
circuit. The sensor measurements are fed to a P4-1.8 GHz personnel
computer (PC) through an interfacing data acquisition system (a portable
data collector). This portable data collector, supplied by Hydac (Type is
HMG2020), acquires the sensory signals of the pressures P; and P, and
the displacement X, sensors. It can receive five different sensor signals
simultaneously, perform preprocessing and data conditioning, and then
sends output signals to the PC. Two identical pressure transducers (Type
HDA3744) and a linear encoder, made by Acurite (Type ENC-150) are
utilized to give the operating data of the tested hydraulic system.

24DCV

. Power
Solenoid sgnals,u supply
. X %o oo 24DCV
Cylinder1 ___ = “; p* 7 pCylinder 2 ¢ 1 | Mana
—— control = starting 12 bCcv
¥] circuit

Limit switch signal

Pa Pe Pressure transducer #1 | I

—Pressure transducer #2 | D2

- collector| :r'—'j=;
Velocity sensor ymm;

The tested hydraulic system

Fig. 4. A schematic layout of thetest rig.
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Cylinder 2

Fig. 5. A photograph of the experimental setup.

Cylinder 1 Linear encoder —x,.x, Cylinder 2

Hydraulic power unit 1

Hydraulic power unit 2

Fig. 6. A schematic layout of the tested hydraulic system.

4.2 Experimental |mplementation of the Faults

Oil Leakage Fault: Keeping a measured flow rate Q. of oil
passing between both sides of cylinder 1 through an external bypassing
line simulates the internal leakage. The bypass line has a needle valve to
control the leaked flow rate grade and a flow meter to measure the
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quantity of leaked flow rate. Thus, the fault index a; can be determined
asgivenin Eq. (8).

Valve Fault: A mechanism is prepared to control the movement of
the valve spool where a setscrew can be adjusted to control the position
of the spool. This leads to control the port area of the DCV. Measuring
the travel of this setscrew and the stroke of the valve spool, the valve
fault index a, can be determined as given in Eq. (9).

5. Experimental Runs Carried out on the ANN Based FDS as
Applied on the Present Hydraulic Test Rig

Extensve sets of experiments have been carried out on the
hardware setup of the hydraulic system. The aim of the experimentsis to
gather data to train, test and evaluate the ANN based FDS. The carried
on experiments can be classified into two categories. The first category
represents all experiments used to train the ANN while the second
category represents the experiments used to test and evaluate the ANN
based FDS. These experiments are:

i. Experiments of a healthy system (Four experiments Hi to Ha).

il. Experiments of an internd leskage fault (Four experiments | F; to IFy).

iii. Experiments of a valve spool blockage fault (Four experiments
VF1to VEy).

All these experiments have been carried out a 100 Hz sampling
rate. Collecting the data of these experiments is accomplished at the
steady state condition. The range of the temperature T is between 36 °C
to 40 °C, the ranges of P; and P, are from 31.1 bar to 31.7 bar and from
1 to 1.2 bar respectively and the range of the velocity X, is between
29.2 mnvVs and 30.4 mmV/s. Eighteen measuring records were captured
over a complete stroke of the hydraulic cylinder. The length of each
record contains six data windows, i.e., one window per each variable of
P1, P2, x, and their derivatives. The number of data per a record is 300

points. Table 1 outlines the experiments, their classification as well as
their conditions.
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Table1. Experiments: Classification and conditions.

Experiment condition and its classification Fault indices
Usage Classification Code a a
H; 0 0
H, 0 0
Hedlthy Hs 0 0
IF; 0.14 0
IF, 0.36 0
Internal leakage fault IFs 0.42 0
For training VF, 0 0.5
the ANN VF, 0 0.63
based FDS Valve spooal blockage fault VF; 0 0.75
For testing Healthy H, 0 0
the ANN Internal |eakage fault IF, 0.44 0
based FDS Valve spool blockage fault VF, 0 0.25

6. Results and Discussion
6.1 Effect of the Measured Variables on the Fault Indices

Figures 7(a) and 7(b) depict the effect of the internal leakage and
valve spool blockage indices a; and a, respectively on the measured
variables Py, P> and X, . The figures reveal that:

- The pressure P, is inversely proportional to the severity of the
valve spool blockage and the internal leakage faults. This coincides with
the simulation results introduced in Ref. [18].

- The pressure P, increases with the severity of the internal oil
leakage, which is also compatible with the mathematical model
simulation presented in Ref. [18].

- The velocity of the actuator pistonrod, X, has the same behavior

of the pressure P; to the severity of the internal leakage and spool
blockage faults.
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Fig. 7: (a) Effect of theinternal leakage severity, represented by a; value, on P, P, and Xp ,

(b) Effect of thevalve pod blockage severity represented by &, value on Py, P, and Xp .

6.2 Training the ANN

Extracting the training data for the ANN: To decide the training
data of the ANN according to Eq. (10) to (12), nine healthy and faulty
cases are used for training the ANN as outlined in Table 1. Each case
covers eighteen windows of the piston extending stroke; I= 18 of 0.5 sec
per window. This means that the number of columns of the input matrix
| is 162 while the number of rows of this matrix is 150, i.e, the
dimension of | is 150" 162. For the output matrix, there are two-fault
indices a; and ap. According to the number of cases studied and the
number of windows covered the extending stroke of the piston rod, the
number of column is the same as the input matrix. This means that the

dimension of the O matrix is2” 162.

Both the input and output training data were gathered by
implementing the different cases outlined in Table 1 and prepared in the
form of | and O matrices. Figure 7 shows the average of the input
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training data of the different healthy and faulty cases. Noting that each
point of each Py, P> and X, represents the average of 900 points which

are actually used in training the ANN.

32.00

30.00 A

28.00 A

P, (bar)

26.00 -

P, (bar), x, (mnvsec)

24.00 +

22.00

Fig. 8. Average values of Py, P, and Xp of the cases used in lear ning the ANN.

SHecting the Number of Nodes in the Hidden Layer (N1): The
problem of the sze choice of the hidden layer is under intensve study
without conclusive answers ¥, The exact analysis of the issue is rather
difficult because of the complexity of the network mapping . The
learning performance of ANN based FDS has been extensvely tested
under the effect of different numbers of nodes in the hidden layer to attain
a mean square error= 0.005. Some of these results are outlined in Table 2.
Based on this study, the number of 30 nodes in the hidden layer yields
good training results. Therefore the ANN based FDS size is 150:30:2.

Table 2. Effect of hidden layer node number on thelearning.

N1 Epochs No. for training conver gence
5 Not converged

10 377282

20 7890

30 5447

50 5502

Learning of the ANN-Based Fault Diagnostic Scheme: The training
procedure establishes the mapping between the cases of operating conditions of
the hydraulic power system, Py, P,, X, and the corresponding values of the
fault severities or fault indices & and a. The BP training agorithm with
momentum and an adaptive learning rate is applied to determine both the
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weights and the biases of the ANN. A sum squared network training-sopping
criterion is selected to be 0.001. The weights, the biases and other parameters
of thetrained ANN-based FDS are determined.

6.3 Testing and Evaluating the Trained ANN Based FDS

Two sets of data have been used for testing the performance of the
trained ANN. The first set is the trained cases, Hito Hs, IF1to IFsand
VF1to VFs, while the second set is the untrained cases, Ha, IF, and VF,
as given in Table 1. Figures 9(a) and 9(b) show the performance of the
trained ANN for the interna leakage and the valve spool blockage faults
respectively. These figures reveal the following:

- The outputs of the trained ANN are noticed to track the variation in
the leakage fault index quite well. Thus, the ANN based FDS is capable
to detect the internal leakage inside the cylinder.

- The ANN has successfully learned the valve spool blockage fault
since the outputs of the valve fault index neuron varies in accordance
with the status of the valve blockage fault index targets.

- The ANN is able to identify a fault severity not present in the
training data.

Interna
leakage fault

(a) Performance of the trained ANN for theinternal |eakage fault
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080 -
060 [t -

:

0.00 fnmomtonmmmpngmndtarnmisot o i g gt —— -~ ___]

T
I I
I I
+ B
I I
I I

L4 ___ A“‘/yll“ 77777777

I |
I
L J
I |
I
!

Valve spool bolckage fault index
a

Hi H Hy p IR IF, IR |5 VR VF, VF VF,

(b) Performance of the trained ANN for the valve spool blockage fault
Fig. 9. Performance of the trained ANN based FDS to the interesting faults: The symbol
“*» indicatesthe untrained casesthat areused only for teting and evaluating the ANN.
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7. Conclusions

This paper has outlined a proposed fault diagnostic scheme of a
hydraulic power system. The FDS is based on the neural networks. The
actuator internal leakage and valve blockage that are amongst the
common problems associated with the abnormal operation of the power
hydraulic system are considered and studied. The designed ANN based
FDS has been trained with sufficient experimental data as applied to a
hydraulic power test rig. Real time experiments have been carried out to
test the validity and the effectiveness of the proposed diagnostic system.
From the results of these experiments, the following conclusions are
drawn:

1. Three sensors are found to be sufficient to diagnose the faults of
the valve and actuator. These sensors are two pressure sensors and one
velocity sensor. The values of the operating variables of these sensors as
well as the corresponding fault indices develop a significant fault
signature for each fault.

2. Thetrained ANN based FDS has the capability to isolate, detect
and identify the various severity magnitudes of the faults of interest.

3. The trained ANN is able to identify accurately a fault severity
not present in the training data

4. The proposed FDS can be practically implemented and thus it is
useful for maintenance and process engineers.

5. Future work in this branch includes investigating more faults like
sensor faults, internal scratches of the actuator, seal failure, bending the
piston rod, piston head looseness and other fault combinations.
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